My talk at the ChickenStress Genomics and Bioinformatics Workshop

A few months ago I gave a talk at the ChickenStress Genomics and Bioinformatics Workshop about genetic mapping of traits and gene expression.

ChickenStress is a European training network of researchers who study stress in chickens, as you might expect. It brings together people who work with (according to the work package names) environmental factors, early life experiences and genetics. The network is centered on a group of projects by early stage researchers — by the way, I think that’s a really good way to describe the work of a PhD student — and organises activities like this workshop.

I was asked to talk about our work from my PhD on gene expression and behaviour in the chicken (Johnsson & al. 2018, Johnsson & al. 2016), concentrating on concepts and methods rather than results. If I have any recurring readers, they will already know that brief is exactly what I like to do. I talked about the basis of genetic mapping of traits and gene expression, what data one needs to do it, and gave a quick demo for a flavour of an analysis workflow (linear mixed model genome-wide association in GEMMA).

Here are slides, and the git repository of the demo:

Den där artikeln om övervikt, FTO och IRX3

Detta har hänt: Hur mycket människor väger har en genetisk komponent och det finns flera studier som kopplar varianter i en gen som heter FTO till övervikt och typ 2-diabetes. Precis vilken den orsakande varianten är och hur den påverkar vikt är inte klart. Häromdagen publicerades en vetenskaplig artikel med resultat som tyder på att varianterna, även om ligger i FTO, kanske utövar sin effekt genom att påverka regleringen av en helt annan gen som ligger en bra bit bort, IRX3. Både FTO och IRX3 verkar ha effekter på vikt i experiment med genetiskt förändrade möss. Förvirringen om vad som egentligen pågår blir alltså ännu större, om än på en högre nivå. I fredags skrev jag lite om detta men utan att gå in på vad artikeln egentligen handlade om. I den här posten ska vi skruva upp genetiknördigheten en smula. Låt oss börja med en bild: så här ser området med FTO och IRX3 ut i UCSC-genomläsaren. Det är en bit av det mänskliga referengenomet, kromosom 16, med kända gener utritade.

hgt_genome_7723_756580

Först och främst, vad är problemet egentligen? Det finns en association till varianter som ligger i FTO. De ändrar i och för sig inte på den kodande delen av genen, men de ligger i första intronen, där det rätt ofta finns reglerande sekvenser. (Titta på spåren märkta ”FTO” i bilden ovan. De kodande bitarna är de tjockare lådorna och intronerna är strecket emellan. IRX3 är nästa gen längs kromosomen.) FTO är den uppenbara kandidaten. Tidigare har folk använt två sorters experiment för att pröva om FTO faktiskt är den orsakande genen och de har fått resultat som förefaller motsäga varandra. Å ena sidan, att mixtra med genen i möss. Det är ett sätt att titta på genens normala funktion: om mössen ökar eller minskar i vikt i jämförelse med kontrollmöss har den antagligen med viktreglering att göra … på något sätt. Och mycket riktigt: möss utan FTO blir magra och möss som uttrycker extra mycket FTO blir stora.

Å andra sidan, genuttryckskartläggning. Det vill säga: Om de genetiska varianterna verkligen har en reglerande effekt borde uttryck av FTO, alltså hur mycket av genen som tillverkas, också vara associerat med samma varianter. Men så är det inte. Så även om FTO visst är inblandat i vikt på något sätt, så verkar det inte vara den underliggande genen till associationen i människor. Om inte det viktiga händer i någon vävnad vid någon tidpunkt där ingen ännu tittat, vill säga.

Hur får en då veta om varianterna kanske reglerar någon annan gen? Ett sätt är att leta efter vilka delar av dna-strängen som är fysiskt nära varandra i cellkärnan. Det där kan behöva en förklaring. Vanligtvis när jag skriver att sekvenser är ”nära” varandra menar avståndet längs dna-strängen. Men när kromosomen är i sitt verkliga tillstånd i cellkärnan ligger den delvis ihoplindad, delvis utsträckt och reglerande sekvenser som påverkar varandra är också nära varandra i rymden. Den teknik författarna använt, circular chromosome conformation capture, går ut på att fånga in sådana sekvensbitar som rör vid varandra, sekvensera dem och på så sätt bygga upp en karta över vilka kromosombitar som har reglerande interaktioner. Det är förstås inte självklart att två bitar som råkar vara nära varandra har någon sorts reglerande interaktion, men om de förekommer tillsammans tillräckligt pekar det i alla fall i den riktningen.

De undersökte den del av FTO-genen som är associerad med övervikt i människor i vävnadsprover från möss. Det visar sig den FTO-biten (47 000 baser) ofta befinner sig nära inte bara området före själva FTO-genen, vilket sannolikt innehåller genens viktigaste reglerande sekvens (promotorn), utan också med IRX3, som ligger en ganska bra bit bort. Och när de sedan tog fram genetiskt förändrade IRX3-knockout-möss visade de sig väga mindre och när de sattes på högfettdiet gå upp mindre i vikt och bli mindre insulinresistenta än vanliga möss. Det är de här genetiskt förändrade mössen som en av författarna, Chin-Chung Hui, beskrev som ”helt resistenta mot fetma orsakad av fet mat” (TT). Dessutom, att mixtra med IRX3 verkar inte ha någon effekt på uttrycket av FTO. Den förefaller verka oberoende av FTO.

Så långt mössen! Författarna tittade på genuttryck i mänsklig hjärna: är varianterna som kopplats till övervikt också associerade med genuttryck? Som förut, ingen association med uttryck av FTO, men med IRX3! Effekten är inte överväldigande tydlig, men det tyder i alla fall på att varianterna i FTO faktiskt har en reglerande effekt på IRX3.

Vart leder allt det här? Sammantaget verkar IRX3 vara en bättre kandidat till att vara den orsakande genen än FTO. Även om tidigare resultat ganska klart visar att FTO också har något med vikt att göra, så verkar det som att just den här varianten, även om den ligger i en intron av FTO faktiskt utövar sin effekt genom att reglera en annan gen. Så rörigt kan det vara.

Litteratur

Smemo & al (2014) Obesity-associated variants within FTO form long-range functional connections with IRX3.
Nature

From my halftime seminar

A couple of weeks ago I presented my halftime seminar at IFM Biology, Linköping university. The halftime at our department isn’t a particularly dramatic event, but it means that after you’ve been going for two and a half years (since a typical Swedish PhD programme is four years plus 20% teaching to a total of five years), you get to talk about what you’ve been up to and discuss it with an invited opponent. I talked about combining genetic mapping and gene expression to search for quantitative trait genes for chicken domestication traits, and the work done so far particularly with relative comb mass. To give my esteemed readers an overview of what my project is about, here come a few of my slides about the mapping work — it is described in detail in Johnsson & al (2012). Yes, it does feel very good to write that — shout-outs to all the coauthors! This is part what I said on the seminar, part digression more suited for the blog format. Enjoy!

Slide04(Photo: Dominic Wright)

The common theme of my PhD project is genetic mapping and genetical genomics in an experimental intercross of wild and domestic chickens. The photo shows some of them as chicks. Since plumage colour is one of the things that segregate in this cross, their feathers actually make a very nice illustration of what is going on. We’re interested in traits that differ between wild and domestic chickens, so we use a cross based on a Red Jungefowl male and three domestic White Leghorn females. Their offspring have been mated with each other for several generations, giving rise to what is called an advanced intercross line. Genetic variants that cause differences between White Leghorn and Red Jungefowl chickens will segregate among the birds of the cross, and are mixed by recombination at meiosis. Some of the birds have the Red Junglefowl variant and some have the White Leghorn variant at a given part of their genome. By measuring traits that vary in the cross, and genotyping the birds for a map of genetic markers, we can find chromosomal chunks that are associated with particular traits, i.e. regions of the genome where we’re reasonably confident harbour a variant affecting the trait. These chromosomal chunks tend to be rather large, though, and contain several genes. My job is to use gene expression measurements from the cross to help zero in on the right genes.

The post continues below the fold! Fortsätt läsa