Vad gör IRX3?

Okej, så det verkar som att associationen mellan intron 1 av FTO och övervikt samt diabetes förklaras av en reglerande effekt på granngenen, IRX3. Men vad gör IRX3 då? Hur är den inblandad i hur tung en blir? Ja, det är det ingen som riktigt vet. Först och främst har den en siffra i namnet, så alla kan gissa att det är den tredje i en familj av IRX-gener. Det är ganska typiskt för gener att de förkommer i familjer av liknande gener som bildats av duplicerande mutationer någon gång under den evolutionära historiens gång. De flesta djur har flera IRX-gener. Ryggradsdjur har sex stycken organiserade i två kluster på varsin kromosom. (Kerner m. fl. 2009) En bit efter FTO och IRX3 i människans kromsom 16 kommer IRX5 och sedan IRX6.

IRX står för Iroquois-familjen efter en muterad bananfluga vars borst tydligen ser ut som en tuppkamsfrisyr. De innehåller en homeodomän, ett återkommande motiv hos många proteiner som reglerar genuttryck. De har betydligt fler och intressantare funktioner än utvecklingen av borst: de är med och bygger upp kroppens former i flugembryon och nervsystemets och hjärtats utveckling hos ryggradsdjur. Sannolikt utövar familjen de funktionerna genom att reglera en väldigt massa andra gener, som transkriptionsfaktorer plägar göra. (Cavodeassi m. fl. 2001)

Så familjen är inblandad lite här och där och den uttrycks lite överallt. Titta på tabell 1 från Houweling m fl. (2001; artikeln är fritt tillgänglig och första tabellen kommer nästan direkt) som sammanfattar mätningar av genuttryck i olika delar av musembryon. IRX3 ligger i IrxB-klustret, så ett B i tabellen betyder att den uttrycks tillsammans med de andra i samma kluster. Etta A betyder är samma sak men för det andra klustret. Ett E betyder att den avviker från de andra två i klustret; ett I betyder att alla uttrycks lika mycket och ett streck att den litet eller inget uttryck. Det är flest A, B och I. Det vill säga: flera familjemedlemmar tenderar att uttryckas tillsammans, särskilt de i samma kluster och särskilt IRX3 och 5. Det här är inte heller så konstigt, men det gör det svårare att reda ut vad en enskild IRX-gen håller på med.

Som en liten illustration: möss utan IRX3 verkar enligt Smemo & co (2014; alltså den artikeln som föranledde den här serien poster) klara sig bra utan konstiga defekter, mer än att de är små och inte blir tjocka av fett foder. Men om hela IrxB-klustret tas bort (och tre andra gener, i och för sig, vilket naturligtvis kan vara en del av orsaken) blir resultatet stackars möss med diverse skelettdefekter (Peters m. fl. 2002). Både IRX3 och IRX5 verkar vara nödvändiga för hjärtat på olika sätt: IRX5 för att hjärtat ska uttrycka rätt jontransportprotiner (Costantini m. fl. 2005) och IRX3 för att det ska bilda cellkontakter och sprida nervsignalen när det ska slå (Zhang m. fl. 2011).

Efter det ovanstående verkar det ju inte så långsökt att Smemo & co tittar på IRX3-uttryck i hjärnan. Deras hypotes om hur IRX3 påverkar vikten är att den skulle mixtra med hjärnans signallering till fettvävnaden och öka förbränningen. Finns det något annat i litteraturen som knyter IRX3 till ämnesomsättning eller aptit? Ja! Redan 2010 kom nämligen en artikel som hävdade att FTO-association kanske förklarades av IRX3-reglering (Ragvin m. fl. 2010). Deras angreppssätt för att hitta reglerande regioner var inte som Smemo & co att fånga in kromosombitar som interagerar, utan att titta efter evolutionära mönster. Viktiga delar av genomet tenderar att konserveras därför att naturligt urval motverkar mutationer som ändrar deras funktion. Oviktiga delar, vilket är lejonparten av genomet, kan muteras sig i stort sett hur mycket som helst.

De hittade konserverande icke-kodande sekvenser nära FTO och testade dem i ett så kallat reporterexperiment, vilket betyder att en sätter in sekvensen i någon organism tillsammans med någon gen som är lätt att detektera när den uttrycks. I det här fallet använde de ett grönt fluorescerande protein (som heter GFP … väldigt fantasifullt) och zebrafiskembryon. Om den konserverade sekvensen verkligen är reglerande kommer cellerna alltså fluorescera grönt när de belyses med ljus av rätt våglängd. Mycket riktigt, de associerade varianterna ligger i reglerande sekvenser som är aktiva i delar av embryot där IRX3 också är aktivt, bland annat i bukspottkörteln.

Bukspottkörteln, ja. Alla diabetesintresserade borde höja på ögonbrynen nu. Författarna prövade att slå ut IRX3 i fiskembryon och fann att det påverkade bildningen av både insulin-, ghrelin- och glukagonproducerande celler. Alla tre är viktiga hormoner för ämnesomsättningen. Insulin och glukagon reglerar blodsocker och ghrelin reglerar aptit. Kort och gott: Smemo & co och och Ragvin & co har båda resultat som tyder på att det är IRX3 som är den viktiga genen. Men de föreslår olika mekanismer, och det kan mycket väl vara både och.

Litteratur

Kerner & al (2009) Evolutionary history of the iroquois/Irx genes in metazoans. BMC Evolutionary biology.

Cavodeassi & al (2001) The Iroquois family of genes: from body building to neural patterning. Development.

Houweling & al (2001) Gene and cluster-specific expression of the Iroquois family members during mouse development. Mechanisms of development.

Costantini & al (2005) The Homeodomain Transcription Factor Irx5 Establishes the Mouse Cardiac Ventricular Repolarization Gradient. Cell.

Zhang & al (2011) Iroquois homeobox gene 3 establishes fast conduction in the cardiac His–Purkinje network. PNAS.

Peters & al (2005) The mouse Fused toes (Ft) mutation is the result of a 1.6-Mb deletion including the entire Iroquois B gene cluster. Mammalian genome.

Ragvin & al (2010) Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to HHEX, SOX4, and IRX3. PNAS.

Smemo & al (2014) Obesity-associated variants within FTO form long-range functional connections with IRX3.
Nature

8650 färgglada bollar: ett genuttrycksnätverk för höns

Genuttryck och höns är ju två av mina intressen, så jag blev givetvis intresserad av Genetic architecture of gene expression in the chicken av Stanley m fl i BMC Genomics. Genetisk arkitektur brukar betyda information om genetiska varianter bakom någon egenskap, men de använder tydligen uttrycket på ett annat sätt. Vad de gjort är ett nätverk som visar korrelationerna i genuttryck mellan 8650 hönsgener, byggt på ungefär 1000 publicerade mikroarrayresultat. Det blir en rätt snygg illustration och en massa öppna frågor. Först något om viktade genuttrycksnätverk!

Metoden de använder kallas WGCNA (det finns ett gäng artiklar om den, se till exempel Langfelder & Horvath 2008 om implementationen i R). Idén är att beskriva hur gener hänger samman genom att se hur deras uttrycksnivåer korrelerar. Det första steget är att göra en stor korrelationsmatris. Så, vilka korrelationer är stora nog att vara intressanta? Istället för att dra en gräns (säg korrelationer större än 0.5 är intressanta) så viktas de med en potensfuktion. Varför en potensfunktion? Jo många nätverk, både biologiska och andra, har det som kallas skalfri struktur där bågarna är fördelade enligt just en potensfunktion. Om nätverket viktas med rätt potens blir det typ skalfritt. En gör alltså antagandet att små korrelationer i allmänhet är oviktiga, men framhäver de stora ännu mer.

Det är god ton bland folk som använder mikroarrayer (”genchip”) och ett krav från många tidskrifter att mikroarraydata publiceras i någon av de offentliga databaserna för sådana. Därför finns det mängder av råa genuttryckdata på internet för den som vill laborera med dem. Det har författarna dragit nytta av och laddat hem varenda hönsarray (av ett visst märke, Affymetrix) de kunnat hitta. Det blev totalt dryga 1000 chip från 67 publicerade experiment på olika vävnader från olika höns. De tog inga hänsyn till under vilka förhållanden genuttrycksvärdena samlades in i första rummet, utan justerade bara för systematiska skillnader mellan experiment.

WGCNA har också ett sätt att dela upp nätverket i moduler (för nördarna där ute: det är hierarkisk klustring, en algoritm för att dela upp det resulterande trädet i grupper och sammanslagning av moduler som är nära varandra). Efter att ha delat upp sitt nätverk i moduler testade de modulerna för anrikning av gener med olika funktioner (”har modulen fler gener av den här typen än det borde bli om de vore slumpvis fördelade”). Här är en Cytoscape-bild av nätverket: varje nod är en gen och varje färg en modul. Mellan noderna går bågar som var och en har en tillhörande vikt. Pilarna pekar ut anrikade funktioner.

chicken_network

(Figur 1, Stanley et al 2013)

Det blir ju en snygg bild och kanske inte så oväntat att antigen processing och immune response som båda har med immunförsvaret att göra eller cytoskelettet och cellcykeln hamnar nära varandra. För min del undrar jag över några saker som inte definieras i artikeln — exakt vad menar de med att en nod är ”among the most highly connected” eller att en modul har ”little or no connections to the rest of the network”. WGCNA har ingen tröskel för när två noder inte anses kopplade, bara bågar med väldigt små vikter. När anser de att en vikt är tillräckligt liten för att inte finnas? En kan lägga märke till att det som pekas ut i diagrammet ovan är ganska allmängiltiga biologiska funktioner. En kan fråga sig om det skulle finnas några skillnader hönsnätverk, ett människonätverk och ett jästnätverk. Går det alls att se några hönsspecifika detaljer? Det finns genuttrycksnätverk som korsar artgränserna, undrar hur mycket det skiljer sig från det här.

Litteratur

Dragana Stanley, Nathan S Watson-Haigh, Christopher JE Cowled, Robert J Moore. (2013) Genetic architecture of gene expression in the chicken. BMC Genomics 14 doi:10.1186/1471-2164-14-13

Peter Langfelder, Steve Horvath. (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9 doi:10.1186/1471-2105-9-559

Mer om myrorna med socialkromosomen

Vet inte riktigt om det framgår av bloggen, men själv använder jag genuttrycksmetoder för att studera diverse egenskaper hos höns. Så den korta biten om genuttryck i artikeln om myrorna intresserade mig lite extra. Och för några år sedan publicerade några av samma gäng en artikel om genuttryck hos samma myror. Och till skillnad från Nature-artikeln är den här i PLOS Genetics, vilket betyder att den är fri att läsa och kopiera för alla: Genome-Wide Expression Patterns and the Genetic Architecture of a Fundamental Social Trait.

De jämförde mRNA mellan BB– och Bb-arbetsmyror från 20 kolonier med fler än en drottning. Resultatet var inte direkt överväldigande: de fann 39 gener vars uttryck skilde sig åt, bland dem gener som liksom Gp-9 kodar för luktreceptorer. Men när de väl hittat den stora inversionen som gör området till Gp-9 till en supergen faller de här resultaten i ett lite annat ljus: det visar sig nämligen att 70% av de gener som skiljer sig i uttryck ligger just i området med inversionen vilket är betydlig fler än de ungefär 5% av alla gener de mätte som ligger där. (Med liknande resultat för jämförelser mellan drottningar och hanmyror i den nya artikeln.)

Det här är ett enrichment test (kanske anrikningstest på svenska) vilket är väldigt vanligt i genuttrycksbranschen. Det jämför helt enkelt hur många gener av en viss kategori som dyker upp med hur många en skulle vänta sig av ren slump. Ofta är det inget vidare test, men det här tror jag är en situation där det passar rätt bra. Det finns ingen särskild anledning att tro att gener som skiljer sig mellan myror med olika variant av Gp-9 skulle ligga på något särskilt ställe i genomet, om det inte vore för den här typen av stora omflyttningar runt genen själv. Det är förmodligen ett exempel på att när inversionen väl har hänt och det inte kan bli några överkorsningar i området så kommer alla möjliga varianter att ärvas tillsammans med Gp-9-allelen, just för att de inte kan rekombineras bort från varandra.

Litteratur

Wang J, Ross KG, Keller L. (2008) Genome-Wide Expression Patterns and the Genetic Architecture of a Fundamental Social Trait. PLOS Genetics 4 e1000127. doi:10.1371/journal.pgen.1000127

Hönsgenetik: Blå äggskal och gamla virusbitar

Hönsgenetik! Hurra! Den här bloggen tjänar ju som min privata journal club, och idag tänkte jag titta närmare på en artikel som kom häromdagen om genetiken bakom blå äggskal: Wang m fl. An EAV-HP Insertion in 5′ Flanking Region of SLCO1B3 Causes Blue Eggshell in the Chicken. De har isolerat två genetiska varianter som orsakar blå äggskal, genom att påverka samma gen, i höns från olika delar av världen. I båda populationerna är det en rest av ett retrovirus som satts in i närheten av genen SLCO1B3, som kodar för ett protein som transporterar organiska joner i celler. Varianten ändrar på uttrycket av genen så att den uttrycks på ställen den inte gör i höns med vita ägg.

De flesta höns lägger ägg med vita eller bruna skal, men det finns några sorter som lägger blå ägg, bland annat i Kina och Chile. Det gäller nu inte klarblå ägg, snarare vita lite blåtonade. Blå äggskal är en klassisk mendeliansk egenskap: den har enkelt arv med ett dominant anlag för den blå färgen. Mendelianska egenskaper är betydligt mer lätthanterliga än kvantitativa egenskaper med många bakomliggande genetiska varianter, men det kan bli rörigt nog ändå. Skoj att se den molekylära grunden för ett till hönsgenetiskt fenomen.

Till experimentet! Artikeln börjar med en serie referenser till tidigare kartläggningar som lokaliserat varianten till ett område på kromosom 1. Författarna gjorde en finare kartläggning av ett 3.3 miljoner baser långt område i en korsning av Dongxiang-höns. Det är en kinesisk hönssort som har individer som lägger blå ägg och en del som lägger bruna, och de korsade tuppar homozygota för den blå allelen med hönor som lägger bruna ägg. Resultatet av kartläggningen blev en mindre region på 120 000 baser. Den innehöll fyra gener — alltså fyra kandidater att undersöka vidare.

Så, ett relativt enkelt om än inte idiotsäkert sätt att leta efter underliggande genen är att mäta genuttryck, alltså hur mycket de fyra generna skrivs om till rna. Författarna gjorde flera olika uttrycksmätningar — först av alla fyra, vilket ledde dem att titta närmare på SLCO1B3. Det här är figur 1 från artikeln och den visar dem alla samt en bild av de blå äggen. Genuttryck skiljer sig mellan vävnader, så var ska en börja leta? De letade i prover från höns’ äggledare för det är där äggskalen bildas.

journal.pgen.1003183.g001

(Figur 1 från Wang et al (2012), PLOS Genetics, Creative commons: BY)

De använde först omvänd transkription och PCR med agarosgel (det är B) i figuren: BS är Dongxiang-höns med blå skal, Dongxiang-NBS är höns utan och ett vitt band betyder att det finns PCR-produkt, alltså mätbart genuttryck. Som synes i bilden är det bara en gen där höns med blått äggskal uttrycker genen och de utan saknar den: SCLO3B1. RT-PCR, som den här tekniken heter, är inte alls dumt men dåligt på att kvantifiera mängder ordentligt. Därför gick de vidare med realtids-PCR (C i figuren). Där verkar det som SLC3B1 uttrycks i flera olika höns med blå skal, men inte i ett antal med vita skal.

Om du är pyrosekvenseringsnörd vill jag gärna prata med dig om D- och E-delen av figuren. (Det blir lite extra rörigt eftersom den snp de mäter är G/T och följs av en rad T.) F visar fluorescensmärkt in situ-hybridisering — det betyder att märkta rna-strängar som matchar genen ifråga sätts till tunna vävnadsprover för att se om de fastnar, så det börjar fluorescera där genen uttrycks. Och här fluorescerar det mer i prover från höns som lägger blå ägg. Fluorescensbilden är snygg, men den nämns mest i förbigående och jag är inte säker på vad som är skillnaden mellan de grönaktiga och blåaktiga bilderna. Åter igen, om det är någon in situ-hybridiseringsnörd som läser får du gärna höra av dig!

När författarna hade en gen gav de sig på att sekvensera den och dess omgivning i jakt på den orsakande genetiska varianten. Sedan jämförde de olika hönsraser med och utan blå ägg för att se vilka varianter som associerar med blå äggskal — och alltså kan vara den orsakande varianten. De hittade ett antal enkla genetiska varianter (snp:ar) i området, men ingen av dem passade. Däremot hittade de ett cirka 4200 baser långt endogent retrovirus, det vill säga en gammal genetisk rest av ett virus som satt in sig strax före genen och antagligen stör någon reglerande sekvens. Virussekvensens spridning i hönspopulationer var helt associerad med blått äggskal. Alltså ser det här ut att vara ännu ett exempel på hur genetiskt skräp kan orsaka nya egenskaper.

Litteratur

Wang Z, Qu L, Yao J, Yang X, Li G, et al. (2013) An EAV-HP Insertion in 5′ Flanking Region of SLCO1B3 Causes Blue Eggshell in the Chicken. PLoS Genet 9. doi:10.1371/journal.pgen.1003183