Det här kommer bara vara roligt för dem som redan bryr sig om gruppselektion, men de är förvånansvärt många. Av någon anledning är gruppselektion väldigt provocerande. Ordet ”selektion” är en omskrivning för naturligt urval. Naturligt urval händer när vissa individer i en population har egenskaper som gör dem bättre på att överleva och fortplanta sig än andra. Om egenskaperna ifråga är ärftliga gör det att populationens egenskaper ändras över generationerna. Detta är evolution genom naturligt urval. De genetiska varianter som får individer att klara sig bättre ökar i frekvens. Men tänk om populationen består av grupper av individer som lever särskilt nära varandra. Kan det finnas egenskaper hos en grupp som gör den framgångsrik och som inte kan förklaras av selektion på individer? Ja, det fullt möjligt. Frågan är hur viktigt det är i naturen.
Organismer gör vanligtvis inte saker för populationens, artens eller gruppens skull. De gör saker för sig själva och sin avkomma. Men det finns många situationer där det är lönsamt, alltså förknippat med större reproduktiv framgång, att samarbeta, hjälpa andra och bete sig altruistiskt. Det är ganska tydligt varför det kan vara fördelaktigt för en individ att hjälpa sina ungar. De bär ju på hälften av ens genetiska material! Vi tänker oss en art där ungarna behöver omvårdnad medan de är små. Där kan en genetisk variant som ökar föräldrabeteendet sprida sig, eftersom den ger bäraren fler överlevande ungar, där i medeltal hälften i av dem kommer bära på samma variant. Samma resonemang fungerar för mer avlägsna släktingar, bara i mindre grad, eftersom sannolikheten att vi delar genetiska varianter blir mindre ju längre från varandra i släktträdet vi befinner oss. Detta kallas släktskapsselektion (engelska: kin selection), att förbättra sin reproduktiva förmåga indirekt genom släktingar. Tyvärr är det ett ganska uselt namn, eftersom det är ett namn på en typ av strategier, inte en egen form av selektion. Ett annat namn för samma sak är inclusive fitness, men det är typ omöjligt att översätta till något vettigt.
Det finns en lång lista med möjliga sätt som altruism kan löna sig i längden (se t.ex. West, Griffin & Gardner 2006). Det kan handla om att hjälpa sina släktingar, som ovan, eller att byta tjänster och gentjänster, eller min favorit: grönt skägg-altruism. Det är en situation där vi tänker oss en genetisk variant som har två olika effekter. Å ena sidan får den individen att bete sig altruistiskt mot individer som har ett visst kännetecken, hypotesens ”gröna skägg”. Dessutom får den individen själv att odla ett grönt skägg, alltså uttrycka samma signal. På så sätt kan den sprida sig genom att bärarna känner igen och hjälper varandra.
Så sociala interaktioner och altruism är inga stora mysterier som helt saknar förklaringar. Men att det inte verkar finnas ett skriande teoretiskt behov av gruppselektion betyder inte att effekter på gruppnivå inte finns. Låt oss därför ta ett exempel där selektion på gruppnivå utan tvivel fungerar och påverkar egenskaper. Naturligtvis kommer exemplet från artificiell selektion, inte naturligt urval, och det handlar om höns. En första version av experimentet ifråga beskrivs av William Muir (1996). Höns är inte riktigt anpassade för ett liv i industriell uppfödning. Ett vanligt problematiskt beteende är att hönsen hackar varandra, i värsta fall till döds. Det här experimentet gick ut på att försöka avla dem för att klara sig bättre i gruppburar med flera höns — utan att klippa i deras näbbar, vilket knappast löser problemet för hönsen men hindrar symptomen … Näbbtrimning är förbjudet bland annat i Sverige. Muir avlade höns på överlevnad i gruppburar, där invånarna i en bur valdes eller valdes bort tillsammans som en grupp. I generation 2 var dödligheten 70%. Jag upprepar: på ett år dog 70% av hönsen. I generation 6 var dödligheten 9% procent, vilket är samma dödlighet som kontrolldjur som hölls ensamma.
En stor del av dödligheten förklaras av hur mycket individen blir hackad. Det kan såklart finnas genetiska varianter som skyddar offer mot fjäderhackning, men det viktigaste för individens överlevnad är inte hur mycket den själv hackar utan hur mycket de andra hackar. Det här fenomenet, när en individs egenskaper påverkas av vilka genetiska varianter som finns hos dem hen interagerar med, kan beskrivas med indirekta genetiska effekter. Indirekta genetiska effekter är en mekanism för hur gruppselektion kan fungera. Okej, men vad hade hänt med vanlig avel på individuell nivå? I ett liknande experiment, med höns i gruppburar, tittade författarna (Bijma & co 2007) på direkta och indirekta genetiska effekter på överlevnad. Jag har skrivit om heritabilitet förut, ett mått på hur stor del av variationen i en egenskap som beror på genetisk variation. Den kan skattas med en statistisk modell (se t.ex. Kruuk 2004) där en lägger samman mätningar och släktträd från ett antal individer och uppskattar hur stor del av egenskapen som går i släkten. Bijma & co använde en utökad version av samma modell som också tar hänsyn till effekten av andra gruppmedlemmar och deras släktträd. Det ger dels en vanlig direkt genetisk varianskomponent, den som används till heritabilitet, och en total varians som räknar med påverkan från de andra gruppmedlemmarna. I det här fallet var den totala genetiska variansen för överlevnad ungefär tre gånger så stor som den direkta genetiska variansen. Det intressanta med genetisk varians i avelssammanhang är att den visar hur snabbt en population kommer påverkas av selektion. I den här populationen bör alltså gruppselektion vara betydligt effektivare än individuell selektion i att minska dödligheten. I princip är det möjligt att ha en direkt och indirekt genetisk effekt i motsatt riktning, där selektion på individ och grupp skulle ge motsatta resultat.
Uppdatering 1 februari 2020: Den artikel jag skriver om här, Pruitt & Goodnigh (2014), är del av en skandal. Det verkar som det snällaste någon kan säga om Pruitts forskning just nu är att ”There is no hard evidence that [Pruitt’s] data are fabricated”. Fortsättning följer kanske, men hur som helst ska vi nog inte gå och tro att de där spindlarna ger bevis för några intressanta idéer om lokal anpassning och sociala interaktioner.
Så långt hönshuset. Kan något liknande hända i naturen? Nyligen kom det en artikel (Pruitt & Goodnight 2014) som hävdar att de sett lokal anpassning på gruppnivå hos spindlar av arten Anelosimus studiosus. Spindlarna lever i kolonier där individerna kan klassificeras i två olika beteendetyper: lugna och aggressiva spindlar. Beroende på hur mycket resurser det finns i omgivningarna har naturliga kolonier olika sammansättning. Så författarna samlade in spindlar från olika ställen, födde upp dem i laboratoriet, testade deras beteende och satte ut dem igen i konstruerade kolonier med olika gruppsammansättning. Sedan kom de tillbaka med jämna mellanrum för att se hur bra experimentkolonierna klarade sig. Kort och gott löpte kolonierna större risk att dö ut om deras sammansättning inte matchade sammansättningen hos naturliga kolonier på den platsen. Det verkar som att på vissa platser är det bra att ha många aggressiva spindlar i en koloni, på andra färre, och om en koloni har för många eller för få kommer den klara sig sämre. I rika omgivningar med mycket att äta verkar det fungera bättre att ha många aggressiva individer. I fattigare omgivningar är det bättre med många lugna.
(A. studiosus av Joe Lapp, på Flickr. cc:by 2.0)
Beteendetyperna, ”lugn” och ”aggressiv” verkar i det här fallet vara till största del bestämda av genetiska varianter. Så frågan är: Vilka interaktioner mellan individer inom kolonin är det som gör att en koloni får en viss sammansättning? Någonting verkar det vara i alla fall, för författarna prövade också att flytta kolonier mellan rik och fattig miljö. Och det ser ut som att kolonier behåller sin karaktäristiska sammansättning över generationerna. Spindlar som kommer från en fattig miljö fortsätter hålla en låg andel aggressiva individer i sina kolonier, även om det vore bättre för dem att ha fler. De verkar vara lokalt anpassade till en resursfattig miljö, där en låg andel aggressiva spindlar hade fungerat bättre.
Oftast det såklart så att de en lever närmast ofta också är de en är närmast släkt med. Så om släktskapsselektion och gruppselektion händer samtidigt kommer det vara svårt eller omöjligt att skilja dem åt. Att jag har svårt att komma på hur en alternativ förklaring med släktsskapsselektion skulle se ut i fallet spindlarna kan bara vara min bristande fantasi. Det är populärt att påstå något i stil med ”gruppselektion och släktskapsselektion är samma sak” av matematiska skäl. Men bevisen för att de bara är beskrivningar av samma process verkar inte vara entydiga. van Veelen m.fl. (2012) ger ett motexempel på en modell där de inte ger samma resultat. Jag kan inte påstå att jag förstår den teoretiska litteraturen på det här området, men att modeller av gruppselektion och av släktskapsselektion är bevisat matematiskt ekvivalenta verkar vara för mycket sagt.
Litteratur