Nessa Carey ”Junk DNA”

I read two popular science books over Christmas. The other one was in Swedish, so I’ll do that in Swedish.

Nessa Carey’s ”Junk DNA: A Journey Through the Dark Matter of the Genome” is about noncoding DNA in the human genome. ”Coding” in this context means that it serves as template for proteins. ”Noncoding” is all the rest of the genome, 98% or so.

The book is full of fun molecular genetics: X-inactivation, rather in-depth discussion of telomeres and centromeres, the mechanism of noncoding microsatellite disease mutations, splicing — some of which isn’t often discussed at such length and clarity. It gives the reader a good look at how messy genomics can be. It has wonderful metaphors — two baseball bats with magnetic paint and velcro, for example. It even has an amusing account of the ENCODE debate. I wonder if it’s true that evolutionary biologists are more emotional than other biologists?

But it really suffers from the framing as a story about how noncoding DNA used to be dismissed as pointless, and now, surprisingly, turns out to have regulatory functions. This makes me a bit hesitant to recommend the book; you may come away from reading it with a lot of neat details, but misled about the big picture. In particular, you may believe a false history of all this was thought to be junk; look how wrong they were in the 70s, and the very dubious view that most of the human genome is important for our health.

On the first page of the book, junk DNA is defined like this:

Anything that doesn’t code for protein will be described as junk, as it originally was in the old days (second half of the twentieth century). Purists will scream, and that’s OK.

We should scream, or at least shake our heads, because this definition leads, for example, to describing ribosomes and transfer-RNA as ”junk” (chapter 11), even if both of them have been known to be noncoding and functional since at least the 60s. I guess the term ”junk” sticks, and that is why the book uses it, and why biologists love to argue about it. You couldn’t call the book something unspeakably dry like ”Noncoding DNA”.

So, this is a fun a popular science book about genomics. Read it, but keep in mind that if you want to define ”junk DNA” for any other purpose than to immediately shoot it down, it should be something like this:

For most of the 50 years since Ohno’s article, many of us accepted that most of our genome is ”junk”, by which we would loosely have meant DNA that is neither protein-coding nor involved in regulating the expression of DNA that is. (Doolittle & Brunet 2017)

The point of the term is not to dismiss everything that is not coding for a protein. The point is that the bulk of DNA in the genome is neither protein coding nor regulatory. This is part of why molecular genetics is so tricky: it is hard to find the important parts among all the rest. Researchers have become much better at sifting through the noncoding parts of the genome to find the sequences that are interesting and useful. Think of lots of tricky puzzles being solved, rather than of a paradigm being overthrown by revolution.

Literature

Carey, Nessa. (2015) Junk DNA: A Journey Through the Dark Matter of the Genome. Icon Books, London.

Doolittle, W. Ford, and Tyler DP Brunet. (2017) ”On causal roles and selected effects: our genome is mostly junk.” BMC Biology.