Interpreting genome scans, with wisdom

Eric Fauman is a scientist at Pfizer who also tweets out interpretations of genome-wide association scans.

Background: There is a GWASbot twitter account which posts Manhattan plots with links for various traits from the UK Biobank. The bot was made by the Genetic Epidemiology lab at the Finnish Institute for Molecular Medicine and Harvard. The source of the results is these genome scans (probably; it’s little bit opaque); the bot also links to heritability and genetic correlation databases. There is also an EnrichrBot that replies with enrichment of chromatin marks (Chen et al. 2013). Fauman’s comments on some of the genome scans on his Twitter account.

Here are a couple of recent ones:

And here is his list of these threads as a Google Document.

This makes me thing of three things, two good, and one bad.

1. The ephemeral nature of genome scans

Isn’t it great that we’re now at a stage where a genome scan can be something to be tweeted or put en masse in a database, instead of published one paper per scan with lots of boilerplate. The researchers behind the genome scans say as much in their 2017 blog post on the first release:

To further enhance the value of this resource, we have performed a basic association test on ~337,000 unrelated individuals of British ancestry for over 2,000 of the available phenotypes. We’re making these results available for browsing through several portals, including the Global Biobank Engine where they will appear soon. They are also available for download here.

We have decided not to write a scientific article for publication based on these analyses. Rather, we have described the data processing in a detailed blog post linked to the underlying code repositories. The decision to eschew scientific publication for the basic association analysis is rooted in our view that we will continue to work on and analyze these data and, as a result, writing a paper would not reflect the current state of the scientific work we are performing. Our goal here is to make these results available as quickly as possible, for any geneticist, biologist or curious citizen to explore. This is not to suggest that we will not write any papers on these data, but rather only write papers for those activities that involve novel method development or more complex analytic approaches. A univariate genome-wide association analysis is now a relatively well-established activity, and while the scale of this is a bit grander than before, that in and of itself is a relatively perfunctory activity. [emphasis mine] Simply put, let the data be free.

That being said, when starting to write this post, first I missed a paper. It was pretty frustrating to find a detailed description of the methods: after circling back and forth between the different pages that link to each other, I landed on the original methods post, which is informative, and written in a light conversational style. On the internet, one would fear that this links may rot and die eventually, and a paper would probably (but not necessarily …) be longer-lasting.

2. Everything is a genome scan, if you’re brave enough

Another thing that the GWAS bot drives home is that you can map anything that you can measure. The results are not always straightforward. On the other hand, even if the trait in question seems a bit silly, the results are not necessarily nonsense either.

There is a risk, for geneticists and non-geneticists alike, to reify traits based on their genetic parameters. If we can measure the heritability coefficient of something, and localise it in the genome with a genome-wide association study, it better be a real and important thing, right? No. The truth is that geneticists choose traits to measure the same way all researchers choose things to measure. Sometimes for great reasons with serious validation and considerations about usefulness. Sometimes just because. The GWAS bot also helpfully links to the UK Biobank website that describes the traits.

Look at that bread intake genome scan above. Here, ”bread intake” is the self-reported number of slices of bread eaten per week, as entered by participants on a touch screen questionnaire at a UK Biobank assessment centre. I think we can be sure that this number doesn’t reveal any particularly deep truth about bread and its significance to humanity. It’s a limited, noisy, context-bound number measured, I bet, because once you ask a battery of lifestyle questions, you’ll ask about bread too. Still, the strongest association is at a region that contains olfactory receptor genes and also shows up two other scans about food (fruit and ice cream). The bread intake scan hits upon a nugget of genetic knowledge about human food preference. A small, local truth, but still.

Now substitute bread intake for some more socially relevant trait, also imperfectly measured.

3. Lost, like tweets in rain

Genome scan interpretation is just that: interpretation. It means pulling together quantitative data, a knowledge of biology, previous literature, and writing an unstructured text, such as a Discussion section or a Twitter thread. This makes them harder to organise, store and build on than the genome scans themselves. Sure, Fauman’s Twitter threads are linked from the above Google Document, and our Discussion sections are available from the library. But they’re spread out in different places, they mix (as they should) evidence with evaluation and speculation, and it’s not like we have a structured vocabulary for describing genetic mechanisms of quantitative trait loci, and the levels of evidence for them. Maybe we could, with genome-wide association study ontologies and wikis.