Dear diary,
A couple of weeks ago I attended the Evolution in Sweden meeting in Uppsala, as expected a very nice meeting with lots of interesting things. My last conference was ESEB last summer, which was great because it was a huge conference with so much to see and so many people. Evolution in Sweden was great because it wasn’t huge, so that it was very possible to see everything, recognise familiar faces and talk with people. I had a poster on the behaviour genetics of chicken domestication (of course!).
Here are some of my personal highlights, in no particular order:
Kerstin Johannesson’s talk, an ”advertisement for marine organsims” was probably the most fun and engaging. I was very convinced that evolutionary research in the Baltic Sea is a great idea! Among other things she mentioned salinity gradients, the sexual and asexual reproduction of Fucus brown algae, Littorina saxatilis of course and the IMAGO project to sequence and assemble reference genomes for eight different species from the Baltic.
We have a great infrastructure for evolutionary research: the Baltic Sea. [quoted from memory]
Claudia Köhler spoke about why triploids in Arabidopsis thaliana fail, which is an interesting story involving the endosperm, which in a triploid seed turns out tetraploid, and genomic imprinting. They screened for mutants able to form triploid seeds and found paternally imprinted gene, that is dosage-sensitive and causes the failure of triploid seeds (Kradolfer & al 2013).
Anna Qvarnström and Hans Ellegren talked about different flycatcher projects. I don’t have that much clever to say about this right now, except that both projects are really fascinating and impressive. Everyone who cares about genomics in the wild should keep an eye on this.
There were two talks from Umeå Plant Science Centre: Stefan Jansson’s about association mapping in aspen (SwAsp), which sounds fun but difficult with tons of genetic variation, and Pär K. Ingvarsson’s about the Norway spruce genome (Nystedt & al 2013). An interesting observation from the latter was that it’s gigantic genome size (~20 Gb) apparently isn’t due to whole-genome duplications, but to unchecked transposable element activity. A nice nugget to remember: about half of the sequence, or three to four human genomes, consists of LTR-type repeats.
I’m afraid you will never read very much from me about theory talks. I am an engineer after all, so I don’t fear the equations that much, but most of the time I don’t have necessary context to have any clue where this particular model fits into the grand scheme of things. However, Jessica Abbott gave a fun talk presenting a model for sexual conflict in hermaphrodites that deserves a special mention.
I did see quite few a genomic plots of Fst outliers and I believe the question that needs answering about them is: What do they really mean? One can do comparisons of comparisons (like in Roger Butlin’s talk and their paper on parallel evolution of morphs in Littorina; Butlin & al 2013), but when it comes to picking out the most differentiated loci on a genome-wide level, are they really the most interesting loci? Are the loci of highest differentiation the loci of adaptation; are they the loci of speciation? (Ellegren’s talk and the flycatcher genome paper; Ellegren & al 2012). It’s a bit like the problem faced by QTL mappers — ”now that we’ve got a few genomic regions, what do we do with them?” — with the added complication that we don’t have a phenotype associated with them.
Genetic architecture wasn’t an explicit theme of the meeting, but it always comes up, doesn’t it? Will traits be massively polygenic, dooming researchers to a lifetime search for missing heritability, or relatively simple with a handful of loci? And under what circumstances will either architecture occur? Jon Ågren talked about the fantastic Arabidopsis thaliana in situ QTL mapping experiment. I think it is best illustrated with the video he showed last time I heard him talk about this — Lost in transplantation:
Folmer Bokma used Lego dinosaurs to great effect to illustrate developmental constraints. Also a large part of the talk was quotes from different famous evolutionary biologists. Very memorable, but I’m not sure I understood where he was heading. I was expecting him to start talking about the need for G matrix methods any moment. My lack of understanding is of course my fault as well, not just of the speaker’s, and there were a few graphs of gene duplications and gene expression data in primates, but I don’t feel that he showed ”how phylogenetic analyses of genomic data can shed new light on these ideas”, as promised in the abstract.
Possibly the best expression of the meeting: Erik Svensson’s ”next generation fieldwork”. I’m not a fan of the inflation of words ending in -omics (and I sometimes feel ”genomics” should just be ”genetics”), but if we have genomics and proteomics, phenomics is also justified, I guess. As a tounge-in-cheek version ”next generation fieldwork” is spot on. And very true: clever phenotyping strategies in natural populations and natural settings is more even more important than rapid sequencing and genotyping. By the way, Erik Svensson, Jessica Abbott, Maren Wellenreuther and their groups have a lab blog which seems nice and active.
And finally, the thing that wasn’t so great, coincidentally, the same thing that wasn’t so great at ESEB: the gender balance: only 7 out of 28 speakers were women. I don’t know to what extent that ratio reflect the gender ratio of Swedish evolutionary biology, but regardless it is too low.
It’s been a while since mid-January, but I’ve been busy (with some fun things — will tell you more later). And maybe we’ll see each other at the next Evolution in Sweden in Lund.