Naturligt urval: Ett par svårigheter med evolutionspsykologi

Evolutionspsykologi är en gren av psykologi som försöker använda sig av evolution för att förstå mänskligt beteende. Fast om det beskrivs så brett är evolutionspsykologin av idag knappast den enda evolutionära psykologin. Freuds psykoanalys lutade sig på en, om än märklig, tolkning av dåtidens evolutionsbiologi. Till och med Skinners radikala behaviorism har en syn på människan som biologisk varelse bland andra djur; det är bara en väldigt tunn mänsklig natur som till största del består av mekanismer för inlärning. Till den som inte tror mig om det senare rekommenderar jag den lilla boken av Naour (2009) som handlar om ett möte mellan E. O. Wilson, som myntade sociobiologin, och B. F. Skinner, en synnerligen otippad diskussion som inträffade 1987. Inte nog med att Skinner lägger ut texten om hur han ser sin psykologi som sammankopplad med evolutionsbiologi. E O Wilson beskriver sig dessutom som behaviorist. Det är en mycket rolig bok. All psykologi med självaktning måste ha någon inställning till människans evolution, och evolutionspsykologer är inte de enda som tänker på ämnet.

Samtida evolutionspsykologi intresserar sig för de beteenden som är någotsånär universella för människor. I den mån de också är någotsånär jämförbara med beteenden som finns i andra djur finns det en chans att använda jämförande metoder. Det går att spåra dem i släktträd (fylogenetiska träd) och se vilka ekologiska omständigheter som orsakar vissa anpassningar. Problemet är bara att människor är så konstiga. Vi pratar språk och överför kulturell information i betydligt mer än de flesta andra djur. Om det inte finns någon bra jämförelsepunkt fungerar fylogenetiska metoder dåligt. Så de egenskaper som kanske är allra intressantast lämpar sig inget vidare för evolutionär analys.

Dessutom är evolutionspsykologer mest intresserade av mänskliga egenskaper som är anpassningar. Alltså, de egenskaper som gynnats av naturligt urval därför att de fick våra förfäder och -mödrar att producera mer avkomma. En skulle kunna tänka sig att jämföra människor med olika egenskaper, se efter hur många barn de får och på så sätt dra slutsatser om ifall beteendet har haft adaptivt värde eller ej. Problemet är att naturligt urval verkar genom att sortera bort variation. Om det finns naturligt urval för en egenskap som är tillräckligt starkt och vara tillräckligt lång tid sorteras den genetiska variationen bort. Förr eller senare blir det bara den mest framgångsrika genvarianten kvar. Så samtida genetisk variation i ett beteende är ingen vidare guide till hur det såg ut i historien. Buss (2005) skriver om detta i sitt introduktionskapitel till en handbok om evolutionspyskologi. Han är föredömligt tydlig med hur evolutionspsykologer utgår ifrån att naturligt urval är en optimerande process som går att jämföra med design, men verkar fullständigt omedveten om problemen med det. Det skulle teoretiskt sett gå att, med populationsgenetiska metoder, spåra gener som varit föremål för naturligt urval under mänsklig evolution, men vi vet helt enkelt för lite om vad gener gör för att kunna tolka dem. Så tyvärr, beteendegenetik är till väldigt liten hjälp. Kom tillbaka om hundra år.

Så vilka metoder har evolutionpsykologer till sitt förfogande för att studera evolutionära anpassningar som gör oss mänskliga? Ja, ironiskt nog är evolution och genetik inte till någon större hjälp, men de har alltid fysiologiska, neurologiska och psykologiska experiment.

Litteratur

Naour, P (2009) E. O. Wilson and B. F. Skinner. A dialogue between sociobiology and radical behaviorism. New York: Springer.

Buss, DM (2005) Conceptual foundations of evolutionary psychology. I: Buss DM (red) Handbook of evolutionary psychology. New Jersey: John Wiley & Sons Inc.

Ett litet försvar av den själviska genen

IMG_20140414_131543

Den själviska genen är en bok av Richard Dawkins som kom ut 1976. Den handlar om djurs beteende och framför allt om hur det kommer sig att djur så ofta samarbetar, hjälps åt och beter sig hyggligt mot varandra trots att deras beteende formats av evolution genom naturligt urval. Boken är både bättre och sämre än sitt rykte.

Bättre, för väldigt mycket kritik om hur den själviska genen rättfärdigar själviskt beteende är fånig. Syftet med texten är precis tvärtom att popularisera evolutionära modeller som förklarar osjälviskt beteende! Det ligger något i att adjektivet ”självisk” lätt leder tanken fel. Genetiska varianter tycker och tänker naturligtvis ingenting, och de är inte själviska heller. De bara är. Men Dawkins’ allegorier om organismer som överlevnadsmaskiner konstruerade av själviska replikatorer är en betydligt bättre bild av evolution än många andra. Den fångar åtminstone hur riktningslös processen är. Evolutionen bryr sig inte om oss, vår moral eller våra ideal om vad som är skönhet eller god design. ”Genialiska”, ”samarbetsvilliga” eller ”solidariska” gener fångar inte den delen av evolution särskilt väl. Om genen ska ha något adjektiv så är det ”självisk”. Kanske också ”nyckfull”.

Sämre, för Den själviska genen är inte den allomfattande boken om evolution, gener och beteende. Faktum är att den behandlar ett ganska begränsat område. Det är inget fel i det, men någon som får hela sin kunskap om evolution från Den själviska genen och från Dawkins’ evolutionsspekulationer i The God Delusion får en ganska bristfällig bild av evolutionsbiologi. Inte nödvändigtvis felaktig, men inte komplett. Personligen tycker jag också att den gjorde världen en stor otjänst genom att mynta ordet ”mem”. Men det är nog ett gräl vi borde ta en annan dag. Att en populär/vetenskaplig bok behandlar ett avgränsat ämne (mest djurs sociala beteende) med några verktyg (mycket Hamiltons regel och evolutionärt stabila strategier) är bra och rimligt. Bara en inte glömmer att evolution är större än det ämnet och de verktygen.

Hur som helst tror jag att många av missförstånden kring Den själviska genen, föga förvånande, har att göra med förståelsen av ordet ”gen”. ”Den själviska genen” avser naturligtvis inte gener i betydelsen ”den själviska dna-sekvensen med någon funktion” utan ”den själviska genetiska varianten”. Boken använder alltså ordet gen i den klassiska betydelsen, inte den molekylära. Som Dawkins skriver:

In the title of this book the word gene means not a single cistron [kodande dna-sekvens, alltså molekylär gen] but something more subtle. /…/ A gene is defined as any portion of chromosomal material that potentially lasts for enough generations to serve as a unit of natural selection. (s. 28)

Det betyder för det första att kritik som går ut på att den själviska genen är utdaterad för att den handlar om gener istället för genuttryck, reglerande varianter, epigenetik osv helt missar målet. Det spelar ingen som helst roll för teorin som beskrivs i Den själviska genen ifall variationen beror på ändringar i proteinsekvens, ändringar i reglerande sekvenser eller för den delen epigenetisk arv. De resultat Dawkins’ bygger på analyserar populationen och evolutionen på en annan nivå som är nästan helt agnostisk till den molekylära grunden för ärftligheten. Och det gäller mycket teoretisk evolutionsbiologi, populationsgenetik och kvantitativ genetik. Bara variationen är ärftlig och beter sig som genetisk variation så fungerar teorin lika bra.

Vidare betyder det att själviskheten som en genetisk variant utövar huvudsakligen går ut över andra varianter av samma gen. Det är inte de genetiska varianternas krig mot varandra, utan konkurrens mellan varianter på samma plats i genomet. I övrigt så formas genetiska varianter av varandra och bildar familjer, komplex och interaktioner som evolverar tillsammans. Det är klart, en genetisk variant kan påverkar de som ligger nära på samma kromosom och de andra varianter den interagerar med (de tekniska termerna för detta är koppling och epistasi, om någon undrar). Men överlag finns det ingen konflikt mellan liknelser där enskilda varianter kallas själviska och liknelser där gener sitter i någon sorts kommitté eller förhandlingar. De är bara olika perspektiv på samma process.

Litteratur

Dawkins, R. (2006) The selfish gene. Oxford University Press. (Det är en jubileumsutgåva. Boken gavs först ut 1976.)

Vilken funktion? Katedralen i Venedig, honors penisar och proopiomelanokortin

Apropå geners funktion: Per Köhler frågade:

kohler_spandrill

Bra fråga. Han hänvisar det en viss artikel och en viss terminologi från Stephen Gould och Richard Lewontin: The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme (1979). Det är en pamflett om evolution som verkar ha haft stort inflytande; den kommer på tal med jämna mellanrum i olika sällskap och biologer har mycket olika åsikter om den. Jag tror den är relativt tillgänglig och värd att läsa en bit av, om en bara kommer ihåg att den är en inlaga i en debatt som inte riktigt finns längre.

Kort och gott skäller Gould & Lewontin på forskare som för lättvindigt antar att organismers olika egenskaper är anpassningar som hjälper dem fortplanta sig. Naturligt urval kan inte åstadkomma vad som helst och har ingen plan för framtiden, så många av levande varelsers egenheter kan bara ha råkat bli så. Som ett exempel på saker som är så för att de blir så lanserar de en liknelse om St Markuskyrkan i Venedig. De tar valvbågarna i kyrkans tak som exempel. De kilformiga ytorna, spandrillerna, är förgyllda och har porträtt av de fyra evangelisterna, men Gould & Lewontin hävdar att det är fel att börja med att anta att spandrillernas funktion är att bära dekorationer, för spandrillerna är en nödvändig bieffekt av andra val vid utformningen av kyrkan. De myntar ordet spandrill (spandrel på engelska) för biologiska egenskaper som har den sortens historia: de uppstod som en bieffekt av något annat och råkar sedan få en ny funktion.

Veneza118

(Foto: Ricardo André Frantz, via Wikimedia Commons. cc:by-sa 2.5)

Jag vet ingenting om arkitektur, men liknelsen om St Markuskyrkan handlar tack och lov inte om det, utan om genetisk arkitektur. Gould & Lewontin föreslår att många egenskaper inte uppstår för att de är föremål för naturligt urval själva, utan för att de är genetiskt korrelerade till andra egenskaper som främjas av naturligt urval. Det är samma genetiska varianter, så att välja den ena egenskapen betyder att den andra hänger med.

För att det här ska bli något begripligare, låt oss ta ett par exempel! Först ett från Gould (1997) och sedan ett nyare exempel (Franchini m.fl 2011). Hos fläckiga hyenor har inte bara hanar utan också honorna en penis. Ibland kallas den pseudopenis, men jag vet inte riktigt vad det är som är pseudo- med den mer än att den sitter på en hona. Hyenorna har också ett socialt system där honorna är bildar en dominanshierarki över hanarna och är jämförelsevis aggressiva. De använder sina penisar i hälsningsceremonier, så den verkar fylla någon social funktion. Som Gould skriver finns det åtminstone två möjliga hypoteser. Är honornas penis en produkt av naturligt urval för bättre social signalering, eller är det kanske en naturligt urval för ändrat beteende som påverkat hormoner som orsakat en ”maskuliniserad” klitoris som bieffekt? Ibland går det att titta närbesläktade arter med och utan egenskapen och ta reda på vad som kom först. Och ibland går det att testa om en viss bieffekt är rimlig, i det här fallet att undersöka om det verkligen är samma hormoner som är inblandade i hyenans penis och beteende. Men det är svårt att säkert veta om något är en anpassning eller inte.

För att göra språkbruket ännu rörigare myntade Gould & Lewontin ett ord till för sina spandriller: exaptation. En adaptation är en evolutionär anpassning; en exaptation är en evolutionär anpassning som bygger vidare på något som från början uppstod som bieffekt. En exapation är en spandrill som har en ny funktion, som när någon kom på att sätta upp mosaiker av evangelisterna i katedralen. Det finns en bunt molekylära exempel på exaptationer: dna-sekvenser som haft någon annan funktion men som av någon mutation flyttats om så att de hamnat i ett nytt sammanhang och börjat göra något nytt. Ett fint exempel kommer från Franchini & co (2011) som studerade regleringen av en gen som heter POMC. Den kodar för proopiomelanokortin som är ett förstadium till flera hormoner som är inblandade i bland annat aptitreglering. POMC uttrycks i hypothalamus under kontroll av två reglerande sekvenser. Den ena, som heter nPE2, uppstod i en urmoder till däggdjuren, medan den andra, nPE1, är yngre och uppstod i en urmoder till placentadjuren. Själva POMC-genen finns bland käkförsedda ryggradsdjur. Poängen är att när Franchini & co letade efter nPE1:s ursprung så fann de att den matchar väl med familj retrotransposoner, alltså en sekvens som från början kommer från ett retrovirus. Virusgenom formas naturligtvis bland annat av naturligt urval, men inte för att reglera däggdjurs hormoner.

Med det i åtanke kan en dela upp spandriller i två sorter: de som uppstått som bieffekter men idag inte har någon evolutionär funktion och de som har fått en ny evolutionär funktion och är exaptationer. I det första fallet är frågan att skilja det som har evolutionär nytta från det som bara råkar ha blivit så, och problemet är att det är ganska lätt att hitta på hyfsat trovärdiga hypoteser om hur det mesta skulle kunna ha någon funktion, men väldigt svårt att avgöra hur det egentligen har gått till. I det andra fallet är det frågan om att avgöra i vilken ordning saker har ägt rum, vilken funktion som kom först och när den nya funktionen kom till. Och till saken hör att på molekylär nivå kommer (nästan) alla egenskaper ha en exaptation någon gång i sin historia. Det är omöjligt, eller i alla fall väldigt osannolikt, att komplexa reglerande sekvenser uppstår i ett slag. Nya sekvenser byggs upp av evolution för någon annan funktion eller process av neutral evolution innan de råkar arrangeras om och få en ny funktion. Nya reglerande sekvenser, som nPE1 ovan, kan flyttas om så att de börjar reglera en ny gen. Gener med nya funktioner uppstår ofta från duplicerade kopior av gener med någon annan funktion (se IRX3, till exempel). Jag ber om ursäkt om det låter som att jag trivialiserar deras fina metafor, men vad Gould & Lewontin egentligen säger är att att evolutionen tager om den så hava kan.

Litteratur

Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B. Biological Sciences, 205(1161), 581-598.

Gould, S. J. (1997). The exaptive excellence of spandrels as a term and prototype. Proceedings of the National Academy of Sciences, 94(20), 10750-10755.

Franchini, L. F., López-Leal, R., Nasif, S., Beati, P., Gelman, D. M., Low, M. J., … & Rubinstein, M. (2011). Convergent evolution of two mammalian neuronal enhancers by sequential exaptation of unrelated retroposons. Proceedings of the National Academy of Sciences, 108(37), 15270-15275.

Dagens rekommendation: Dom Wright i tidningen

Häromveckan blev min handledare, Dominic Wright, intervjuad i Linköpingsposten med anledning av att han just blivit lektor. Några formuleringar är ganska lustiga men nåja. Det är dock sant att National Geographics skrev om vår förra vetenskapliga artikel om kamstorlek under överskriften ”Tales of the weird” (den primära artikeln var naturligtvis inte där, utan i PLOS Genetics). Dessutom gulliga kycklingbilder.

Dagens rekommendation: Stressforskning öppnar för bättre djurhållning

En liten video från Linköpings universitet om en del av forskningen som äger rum i AVIAN-gruppen, den metagrupp vid IFM Biologi som jag också tillhör. De som pratar är Pelle Jensen, professor i etologi (och min bihandledare) och Hanne Løvlie, forskarassistent. Hanne berättar om en del av sin forskning om höns personlighet, bland annat tillsammans med Josefina Zidar, doktorand och min kontorskamrat. De forskar bland annat på hur höns förmåga att lösa olika problem, som att lära sig hitta mat i en labyrint, och hur det hänger ihop med hur de beter sig i andra situationer som mäter olika personlighetsdrag. Pelle pratar om stress och genetik, två övergripande teman i mycket av vår forskning, och vad det är för nytta med kunskaper om höns.

En del av hönsen syns också i bild, både röda djungelhöns, den art som tamhönsen kommer ifrån, och vita domesticerade värphöns. Bland andra jag sysslar mycket med en korsningslinje mellan tama och vilda höns, men jag tror inte några sådana skymtar förbi. Vi använder både jämförelser mellan tama och vilda höns och korsningar dem emellan för att titta på den genetiska grunden för olika skillnader mellan vilt och tamt.

Journal club of one: ”Maternal and additive gentic effects contribute to variation in offspring traits in a lizard”

The posts this week have been about epigenetics. However, let’s step back from the molecular mechanisms and what not to look at the bigger picture. This recent paper by Noble, McFarlane, Keogh and Whiting (2014) looks at maternal effects and additive genetic effects on fitness-related traits in a lizard. Now we are in quantitative genetics territory where one uses pedigrees and phenotypes to look at the determinants of a trait while abstracting away the mechanistic details. Nowadays, quantitative genetics is also equipped with Bayesian animal models and the ability to do parentage assignment with molecular methods.

The authors measured at size, body mass, and growth and as well as the speed and endurance when running. The fun part is that while only endurance had a substantial heritability (0.4), the other traits had maternal components in the 0.2-0.5 range. So for most of the traits there’s little heritability while a big chunk of the trait variance is explained by maternal effects.

Comments:

I like the idea to include maternal traits to see look at what causes the maternal effect. Clutch size, maternal size and condition seem matter for some trait or another. In two cases the maternal effect is entirely explained away: the effect on growth by birth date and clutch size, and sprint speed by birth date.

The inferences come from an animal model that include a maternal effect. Something I’m curious about is how heritability would be overestimated if the maternal component was not accounted for. That is beside the point of the paper, though.

Another interesting point: I think everyone who deals with animals in some type of controlled environment wonder about how much our measurements differ from what would’ve been measured in a more natural environment. In this case, the authors measured offspring growth both in the test environment and in an enclosure. They find a maternal effect in the test environment, while the interval for the heritability goes from almost zero to 0.5. In the wilder environment they estimate very little genetic and maternal variance, as well as a larger residual variance. I don’t know if this is just because of increased noise, or because maternal effects actually interact with condition.

Also, I love figure 1 (the one figure). If more papers had caterpillar plots of most important estimated quantities, the world would be a better place.

Literature

Noble, D. W., McFarlane, S. E., Keogh, J. S., & Whiting, M. J. (2014). Maternal and additive genetic effects contribute to variation in offspring traits in a lizard. Behavioral Ecology, aru032.

Paper: ”Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens”

Since I love author blog posts about papers, I thought I’d write a little about papers I’ve contributed too. So far, they’re not that many, but maybe it can be a habit.

Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens” was published in BMC Genomics in 2012. The title says it very well: the paper looks at differential expression and DNA methylation of a subset of genes in the hypothalamus of Red Junglefowl and domestic White Leghorn chickens. My contribution was during my MSc project in the group. Previously (Lindqvist & al 2007; Nätt & al 2009) Daniel Nätt, Pelle Jensen and others found a transgenerational effect of unpredictable light stress on domestic chickens. After that, and being interested in chicken domestication, a DNA methylation comparison of wild and domestic seems like a natural thing to do. And it turns out Red Junglefowl and White Leghorns differ in expression of a bunch of genes and in methylation of certain promoters (where promoter is operationally defined as a region around the start of the gene model). And when looking at two generations, the contrasts are correlated between parent and offspring. There is some heritable basis of the differences in gene expression and  DNA methylation.

In Red Junglefowl, ancestor of domestic chickens, gene expression and methylation profiles in thalamus/hypothalamus differed substantially from that of a domesticated egg laying breed. Expression as well as methylation differences were largely maintained in the offspring, demonstrating reliable inheritance of epigenetic variation.

What I did was methylation sensitive high resolution melting. HRM is a typing method based on real time PCR. After PCR you often make a melting curve by ramping up the temperature, denaturing the PCR product. The melting characteristics depend on the sequence, so you can use melting to check that you get the expected PCR product, and it turns out that the difference can be big enough to type SNPs. And if you can type SNPs, you can analyse DNA methylation. So we treat the DNA with bisulfite, which deaminates cytosines to uracil unless they are protected by methylation, and get a converted sequence where an unmethylated C is like a C>T SNP. We set up standard curves with a mixture of whole-genome amplified and in vitro methylated DNA and measured the degree of methylation.

That is averaging over the population of DNA molecules in the sample; I’ve been wondering how HRM performs when the CpGs in the amplicon have heterogenous methylation differences. We’ve used HRM for genotyping as well, and it works, but we’ve switched to pyrosequencing, which gives cleaner results and where the assay design is much easier to get right the first time. I don’t know whether the same applies for methylation analysis with pyro.

heritability_methylation_fig4b

My favourite part of the paper is figure 4b (licence: cc:by 2.0) which shows methylation analysis in the advanced intercross of Red Junglefowl and White Leghorns, which immediately leads to, as mentioned in the paper, the thought of DNA methylation QTL mapping.

Literature

Nätt, D., Rubin, C. J., Wright, D., Johnsson, M., Beltéky, J., Andersson, L., & Jensen, P. (2012). Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens. BMC genomics, 13(1), 59.

Lindqvist C, Janczak AM, Nätt D, Baranowska I, Lindqvist N, et al. (2007) Transmission of Stress-Induced Learning Impairment and Associated Brain Gene Expression from Parents to Offspring in Chickens. PLoS ONE 2(4): e364. doi:10.1371/journal.pone.0000364

Nätt D, Lindqvist N, Stranneheim H, Lundeberg J, Torjesen PA, et al. (2009) Inheritance of Acquired Behaviour Adaptations and Brain Gene Expression in Chickens. PLoS ONE 4(7): e6405. doi:10.1371/journal.pone.0006405