Paper: ”Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens”

Since I love author blog posts about papers, I thought I’d write a little about papers I’ve contributed too. So far, they’re not that many, but maybe it can be a habit.

Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens” was published in BMC Genomics in 2012. The title says it very well: the paper looks at differential expression and DNA methylation of a subset of genes in the hypothalamus of Red Junglefowl and domestic White Leghorn chickens. My contribution was during my MSc project in the group. Previously (Lindqvist & al 2007; Nätt & al 2009) Daniel Nätt, Pelle Jensen and others found a transgenerational effect of unpredictable light stress on domestic chickens. After that, and being interested in chicken domestication, a DNA methylation comparison of wild and domestic seems like a natural thing to do. And it turns out Red Junglefowl and White Leghorns differ in expression of a bunch of genes and in methylation of certain promoters (where promoter is operationally defined as a region around the start of the gene model). And when looking at two generations, the contrasts are correlated between parent and offspring. There is some heritable basis of the differences in gene expression and  DNA methylation.

In Red Junglefowl, ancestor of domestic chickens, gene expression and methylation profiles in thalamus/hypothalamus differed substantially from that of a domesticated egg laying breed. Expression as well as methylation differences were largely maintained in the offspring, demonstrating reliable inheritance of epigenetic variation.

What I did was methylation sensitive high resolution melting. HRM is a typing method based on real time PCR. After PCR you often make a melting curve by ramping up the temperature, denaturing the PCR product. The melting characteristics depend on the sequence, so you can use melting to check that you get the expected PCR product, and it turns out that the difference can be big enough to type SNPs. And if you can type SNPs, you can analyse DNA methylation. So we treat the DNA with bisulfite, which deaminates cytosines to uracil unless they are protected by methylation, and get a converted sequence where an unmethylated C is like a C>T SNP. We set up standard curves with a mixture of whole-genome amplified and in vitro methylated DNA and measured the degree of methylation.

That is averaging over the population of DNA molecules in the sample; I’ve been wondering how HRM performs when the CpGs in the amplicon have heterogenous methylation differences. We’ve used HRM for genotyping as well, and it works, but we’ve switched to pyrosequencing, which gives cleaner results and where the assay design is much easier to get right the first time. I don’t know whether the same applies for methylation analysis with pyro.


My favourite part of the paper is figure 4b (licence: cc:by 2.0) which shows methylation analysis in the advanced intercross of Red Junglefowl and White Leghorns, which immediately leads to, as mentioned in the paper, the thought of DNA methylation QTL mapping.


Nätt, D., Rubin, C. J., Wright, D., Johnsson, M., Beltéky, J., Andersson, L., & Jensen, P. (2012). Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens. BMC genomics, 13(1), 59.

Lindqvist C, Janczak AM, Nätt D, Baranowska I, Lindqvist N, et al. (2007) Transmission of Stress-Induced Learning Impairment and Associated Brain Gene Expression from Parents to Offspring in Chickens. PLoS ONE 2(4): e364. doi:10.1371/journal.pone.0000364

Nätt D, Lindqvist N, Stranneheim H, Lundeberg J, Torjesen PA, et al. (2009) Inheritance of Acquired Behaviour Adaptations and Brain Gene Expression in Chickens. PLoS ONE 4(7): e6405. doi:10.1371/journal.pone.0006405

Also: the spectre of epigenetic inheritance

What is is that is so scandalous about epigenetic inheritance? Not much, in my opinion. Some of the points on the spectrum clearly happen in the wild: stable and fluctuating epigenetic inheritance in plants, parental effects in animals and genomic imprinting in both. Widespread epigenetic inheritance in animals would change a lot of things, of course, but even if epigenetic inheritance turns out to be really important and common, genetics and evolution as we know them will not break. The tools to study and understand them are there.

Looking back at the post from yesterday, there are different flavours of epigenetic inheritance. At the most heritable end of the spectrum, epigenetic variants behave pretty much like genetic variants. Because quantitative genetics is agnostic to the molecular nature of the variants, as long as they behave like an inheritance system, most high-level genetic analysis will work the same. It’s just that on the molecular level, one would have to look to epigenetic marks, not to sequence changes, for the causal variant. Even if a substantial proportion of the genetic variance is caused by epigenetic variants rather than DNA sequence variants, this would not be a revolution that changes genetics or evolution into something incommensurable with previous thought.

The most revolutionary potential lies somewhere in the middle of the scale, in parental effects with really high fidelity of transmission that are potentially responsive to the environment, but in principle these things can still be dealt with by the same theoretical tools. Most people just didn’t think they were that important. How about soft inheritance? It seems dramatic, but all examples deal with specific programmed mechanisms: soft inheritance of the sensitivity to a particular odour or of the DNA methylation and expression state of a particular locus. No-one has yet suggested a generalised Lamarckian mechanism; that is still out of the question. DNA mutations are still unable to pass from somatic cells to gametes. Whatever tricks transgenerational mechanisms use to skip over the soma–germline distinction, they must be pretty exceptional. Discoveries of widespread soft inheritance in nature would be surprising, a cause for rethinking certain things and great fun. But conceptually, it is parental effects writ large. We can understand that. We have the technology.

Morning coffee: the spectrum of epigenetic inheritance


Let us think aloud about the different possible meanings of epigenetic inheritance. I don’t want to contribute to unnecessary proliferation of terminology — people have already coined molar/molecular epigenetics (Crews 2009), intergenerational/transgenerational effects (Heard & Martienssen 2014), and probably several more dichotomies. But I thought it could be instructive to try to think about epigenetic inheritance in terms of the contribution it could make to variance components of a quantitative genetic model. After all, quantitative genetics is mostly agnostic about the molecular nature of the heritable variation.

At one end of the spectrum we find molecular epigenetic marks such as DNA methylation, as they feature in the normal development of the organism. Regardless of how faithfully they are transmitted through mitosis, or even if they pass through meiosis, they only contribute to individual variation if they are perturbed in different ways between individuals. If they do vary between individuals, though, in a fashion that is not passed on to the offspring, they will end up in the environmental variance component.

What about transmissible variation? There are multiple non-genetic ways for information to be passed a single generation: maternal or paternal effects need not be epigenetic in the molecular sense. They could be, like genomic imprinting, but they could also be caused by some biomolecule in the sperm, something that passes the blood–placenta barrier or something deposited by the mother into the egg. Transgenerational effects of this kind make related individuals more similar, they will affect the genetic variance component unless they are controlled. And in the best possible world of experimental design, parental effects can be controlled and modelled, and we can in principle separate out the maternal, paternal and genetic component. Think of effects like in Weaver & al (2004) that are perpetuated by maternal behaviour. If the behavioural transmission is strong enough they might form a pretty stable heritable effect that would appear in the genetic variance component if it’s not broken up by cross-fostering.

However, if the variation behaves like germ-line variation it will be irreversible by cross-fostering, inseparable from the genetic variance component, and it will have the potential to form a genuine parallel inheritance system. The question is: how stable will it be? Animals seem to be very good at resetting the epigenetic germline each generation. The most provocative suggestion is probably some type of variation that is both faithfully transmitted and sometimes responsive to the environment. Responsiveness means less fidelity of transmission, though, and it seems (Slatkin 2009) like epigenetic variants need to be stable for many generations to make any lasting impact on heritability. Then, at the heritable end of the spectrum, we find epigenetic variants that arise from some type of random mutation event and are transmitted faithfully through the germline. If they exist, they will behave just like any genetic variants and even have a genomic locus.

Epigenetics: what happened with this?

In 2012, Yan Li & Chris O’Neill published a paper about DNA methylation in the early mouse embryo, claiming that the first wave of demethylation following fertilisation in the mouse embryo doesn’t happen.

This picture, figure 1 from Seisenberger & al (2013; license: cc:by 3.0), shows what it is about. The curves represent DNA methylation level, and first time the curves drop represents the demethylation in question:


Li & O’Neill used a variation of immunostaining for methylated cytosine. Figures 8 and 3 summarise the results: eight shows embryos stained for methylated cytosine with two different preparation methods. The main claim of the paper is that the added trypsin treatment in the preparation helps unmask DNA methylation. So maybe the cytosine methylations are not removed, but temporarily hidden by something else. Figure 3 shows a Western blot for methyl-binding domain protein 1. The claim here is that if MBD1 is expressed, DNA methylation is also there. The obvious alternative hypothesis is that their variation on the protocol creates some kind of artefact and that MBD1 expression doesn’t matter.


Figure 8, Li & O’Neill (cc:by 3.0).

The paper has been cited mostly by review papers, and I haven’t seen any further news on the subject. Does anyone know if anything more has happened?


Li Y, O’Neill C (2012) Persistence of Cytosine Methylation of DNA following Fertilisation in the Mouse. PLoS ONE 7(1) e30687. doi:10.1371/journal.pone.0030687

Seisenberger, S., Peat, J. R., Hore, T. A., Santos, F., Dean, W., & Reik, W. (2013). Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1609), 20110330.

Dagens rekommendation: F Jalalvand m. fl. om värdet av mysko forskning

Vi vet för lite om allt för att kunna lösa problem snabbt. Vi vet för lite om allt. Vi vet för lite om mänsklig genetik. Vi vet för lite om cellens metabolism. Vi vet för lite om samspelet mellan sjukdomsframkallande organism och värd. Vi har för få metoder. Vi vet för lite om allt. Och om den tillämpade forskningen ska ta reda på allt som den behöver för att kunna lösa problemen den är ämnad för att lösa hade den behövt tillbringa ett par 100-200 år åt det innan den kunde sätta igång med det verkliga arbetet (uppdiktade siffror, men play with me here).

Den här bloggposten av F Jalalvand, doktorand i mikrobiologi i Lund, är en gammal favorit om varför det är viktigt att forska om saker som inte verkar ha någon omedelbar nytta. Han radar upp en serie exempel, som inte alls är långsökta eller udda, på hur nyfikenhetsdriven forskning senare kommit att bli väldigt fruktbar även för tillämpad forskning. Bloggen är även övrigt mycket läsvärd.

Låt oss nu säga att en forskargrupp jobbar med att förstå och utveckla ett botemedel mot bröstcancer. Om forskarna hade själva behövt upptäcka Taq-polymeraset, GFP, RNA silencing och all annan kunskap och metodologi som härstämmar från grundforskning förstår ni att botemedlet hade dröjt.

Och om läsaren råkar ha tillgång till ett forskningsbibliotek finns det en kolumn i en vetenskaplig tidskrift av Patricia Brennan m.fl. som säger ungefär samma sak:

Brennan, Patricia LR, et al. (2014) Oddball Science: Why Studies of Unusual Evolutionary Phenomena Are Crucial. BioScience 64.3 178-179.

Dagens rekommendation: Emily Pritchards up goer five om Ensembl

Your body is made up of cells. Each of those cells has a lots of letters inside them, which tell the cell what to do. The order of the letters is very important. We get these letters from our parents and different people have slightly different letters, which is what makes people different on the outside.

Emily Pritchard arbetar med genomläsaren Ensembl och har skrivit en text om detta i stil med xckd:s Up goer five.

Vad är funktion?

Igår påstod jag att när jag skriver ”gen” så menar jag en dna-sekvens med ett namn och en funktion. Befogad fråga: vad sjutton är en funktion? Om det tvistar de lärda med flera, vilket illustreras av debatten om dna-encyklopedin ENCODE. Jag har skrivit lite om det förut, men kortfattat: ENCODE gick ut på att använda olika sekvenseringsbaserade experiment för att hitta de sekvenser i det mänskliga genomet som har någon funktion. Projektet hävdade at en väldigt stor de av genomet, upp till 80%, dök upp i något av experimenten som kopplade till någon biokemisk aktivitet. Deras motståndare svarade att ENCODE använt fel definition av ”funktion”; det viktiga är inte aktivitet utan om den aktiviteten bevarats av naturligt urval.

För det första: en dna-sekvens gör ingenting i sig själv; det är inte det som är frågan. Det intressanta är vad cellen och dess maskineri av biologiskt aktiva proteiner och rna-molekyler gör med en dna-sekvens. Det enklaste är kanske att säga att en sekvens’ funktion är vad cellen gör med den, åtminstone om det sker tillräckligt pålitligt och reproducerbart. Å andra sidan kan en ha en evolutionär syn på funktion, där en sekvens endast har en funktion om den främjats av naturligt urval. Alltså: sekvensen ser ut som den gör och cellen använder den som den gör därför att det på något sätt givit individer som bär den reproduktiv framgång. Dan Graur & co (2013) skrev en mycket arg artikel om ENCODE där de bland annat förespråkar den evolutionära synen på funktion. Artikeln är kanske lite för arg, men det här är ett bra exempel:

In biology, there are two main concepts of function: the “selected effect” and “causal role” concepts of function. /…/ For clarity, let us use the following illustration (Griffiths 2009). There are two almost identical sequences in the genome. The first, TATAAA, has been maintained by natural selection to bind a transcription factor; hence, its selected effect function is to bind this transcription factor. A second sequence has arisen by mutation and, purely by chance, it resembles the first sequence; therefore, it also binds the transcription factor. However, transcription factor binding to the second sequence does not result in transcription, that is, it has no adaptive or maladaptive consequence. Thus, the second sequence has no selected effect function, but its causal role function is to bind a transcription factor.

Jag tror inte att jag förvränger Graur & co:s argument om jag säger att de ser 80%-siffran som en sorts reductio ad absurdum av att prata om funktion som bara vad en dna-sekvens används till. Genomet är stort och fullt med sekvenser som bara av en slump innehåller bindingsställen för olika reglerande proteiner etc. Oavsett om det råkar skrivas av till rna ibland eller binda till transkriptionsfaktorer så är det mesta ändå att betrakta som irrelevant från det naturliga urvalets synpunk. Sedan finns det en del som tycker att skräp-dna låter slarvigt och vulgärt, men det är en fråga om språkbruk, inte om genomets funktion.

Hur vet en då om en sekvens har funktion ur det naturliga urvalets perspektiv? När genomet kopieras drabbas det av slumpvisa mutationer, avskrivningsfel helt enkelt, som ändrar sekvensen här och där. Om mutationen gör att något går sönder och det påverkar individens förmåga att reproducera sig tillräckligt kommer varianten sorteras bort av naturligt urval. Därför är vissa viktiga delar av genomet, framför allt de gener som kodar för proteiner, konserverade. Därför går de också att känna igen mellan arter som är mycket avlägset släkt, även om den omkringliggande icke-kodande sekvensen kan vara helt olika.

Men det är inte självklart att det alltid är funktion-genom-naturligt-urval som är det intressanta. För det första, allt är inte lika väl konserverat som de proteinkodande sekvenserna, så det är inte säkert att alla reglerande sekvenser och nyligen tillkomna gener som är specifika för ett visst släkte kommer gå att hitta med metoder som letar efter konservering. Det finns en risk att missa de absolut senaste intressanta sekvenserna under naturligt urval bara för att det inte finns något att jämföra med. Dessutom är det inte alls säkert att en bara är intresserad av sekvenser som bevaras av naturligt urval. Om en studerar mänsklig sjukdom, till exempel, är det mycket möjligt att de intressanta sekvenserna faktiskt är neutrala i förhållande till naturligt urval. De kan till exempel ha sin effekt sent i livet, efter reproduktiv ålder.

Vad är en gen?

Det här skrev jag om för ett tag sedan i samband med den så kallade fetmagenen, en genetisk variant som är associerad med vikt hos människor, men jag tror det är värt att dra ut på det lite mer. Vad är egentligen en gen? Det visar sig nämligen att det finns åtminstone två betydelser av ordet ”gen” som är vanliga inom genetik, evolution och biologi i stort. Det är inte bara förvirrande för utomstående utan orsakar ibland viss språkförbistring även i vetenskaplig litteratur.

Om vi börjar i fel ände, alltså med den molekylära definitionen, så är en gen en bit dna som skrivs av till ett protein eller någon annan produkt som har en funktion. Själv brukar jag tänka att om en bit dna är intressant nog att ha ett namn så förtjänar den att kallas gen, men jag tror de flesta skulle säga att sekvenser som inte uttrycks inte är ”gener”, utan någon sorts funktionsbärande icke-kodande sekvenser. En gen(1) är alltså ett område i genomet, och gener kan komma i olika varianter. Vi diploida organismer bär två kopior av varje gen. Men om en tar två människor och jämför dem så har de alla samma uppsättning gener, men kan ha olika varianter av dem. Det här är det språkbruk jag själv föredrar och försöker hålla mig till: när jag skriver ”gen” menar jag en dna-sekvens som har ett namn.

Men det är inte vad ordet gen ursprungligen betydde! Som ordet användes av Hugo de Vries och Wilhelm Johannsen m.fl. innan någon visste om dna betydde det väsentligen genetisk variant. Alltså: en gen(2) är ärftlighetens minsta enhet. Vi diploida organismer bär alltså på två varianter, två gener, på varje locus (som det heter: bokstavligen plats, vilket typ motsvarar den molekylära genen ovan). Så om någon pratar om att ha ”fetmagenen” använder hen, kanske utan att tänka på det, ordet gen i den här klassiska bemärkelsen att bära på det anlag som orsakar större kroppsvikt. I så fall finns naturligtvis också en ”magergen”, alltså en variant som ger relativt mindre kroppsvikt. Båda av dem är varianter som påverkar uttrycket av den molekylära genen IRX3.