Epigenetics: what happened with this?

In 2012, Yan Li & Chris O’Neill published a paper about DNA methylation in the early mouse embryo, claiming that the first wave of demethylation following fertilisation in the mouse embryo doesn’t happen.

This picture, figure 1 from Seisenberger & al (2013; license: cc:by 3.0), shows what it is about. The curves represent DNA methylation level, and first time the curves drop represents the demethylation in question:

dna_demethylation_fig1

Li & O’Neill used a variation of immunostaining for methylated cytosine. Figures 8 and 3 summarise the results: eight shows embryos stained for methylated cytosine with two different preparation methods. The main claim of the paper is that the added trypsin treatment in the preparation helps unmask DNA methylation. So maybe the cytosine methylations are not removed, but temporarily hidden by something else. Figure 3 shows a Western blot for methyl-binding domain protein 1. The claim here is that if MBD1 is expressed, DNA methylation is also there. The obvious alternative hypothesis is that their variation on the protocol creates some kind of artefact and that MBD1 expression doesn’t matter.

journal.pone.0030687.g008

Figure 8, Li & O’Neill (cc:by 3.0).

The paper has been cited mostly by review papers, and I haven’t seen any further news on the subject. Does anyone know if anything more has happened?

Literature

Li Y, O’Neill C (2012) Persistence of Cytosine Methylation of DNA following Fertilisation in the Mouse. PLoS ONE 7(1) e30687. doi:10.1371/journal.pone.0030687

Seisenberger, S., Peat, J. R., Hore, T. A., Santos, F., Dean, W., & Reik, W. (2013). Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1609), 20110330.

Dagens rekommendation: F Jalalvand m. fl. om värdet av mysko forskning

Vi vet för lite om allt för att kunna lösa problem snabbt. Vi vet för lite om allt. Vi vet för lite om mänsklig genetik. Vi vet för lite om cellens metabolism. Vi vet för lite om samspelet mellan sjukdomsframkallande organism och värd. Vi har för få metoder. Vi vet för lite om allt. Och om den tillämpade forskningen ska ta reda på allt som den behöver för att kunna lösa problemen den är ämnad för att lösa hade den behövt tillbringa ett par 100-200 år åt det innan den kunde sätta igång med det verkliga arbetet (uppdiktade siffror, men play with me here).

Den här bloggposten av F Jalalvand, doktorand i mikrobiologi i Lund, är en gammal favorit om varför det är viktigt att forska om saker som inte verkar ha någon omedelbar nytta. Han radar upp en serie exempel, som inte alls är långsökta eller udda, på hur nyfikenhetsdriven forskning senare kommit att bli väldigt fruktbar även för tillämpad forskning. Bloggen är även övrigt mycket läsvärd.

Låt oss nu säga att en forskargrupp jobbar med att förstå och utveckla ett botemedel mot bröstcancer. Om forskarna hade själva behövt upptäcka Taq-polymeraset, GFP, RNA silencing och all annan kunskap och metodologi som härstämmar från grundforskning förstår ni att botemedlet hade dröjt.

Och om läsaren råkar ha tillgång till ett forskningsbibliotek finns det en kolumn i en vetenskaplig tidskrift av Patricia Brennan m.fl. som säger ungefär samma sak:

Brennan, Patricia LR, et al. (2014) Oddball Science: Why Studies of Unusual Evolutionary Phenomena Are Crucial. BioScience 64.3 178-179.

Dagens rekommendation: Emily Pritchards up goer five om Ensembl

Your body is made up of cells. Each of those cells has a lots of letters inside them, which tell the cell what to do. The order of the letters is very important. We get these letters from our parents and different people have slightly different letters, which is what makes people different on the outside.

Emily Pritchard arbetar med genomläsaren Ensembl och har skrivit en text om detta i stil med xckd:s Up goer five.

Vad är funktion?

Igår påstod jag att när jag skriver ”gen” så menar jag en dna-sekvens med ett namn och en funktion. Befogad fråga: vad sjutton är en funktion? Om det tvistar de lärda med flera, vilket illustreras av debatten om dna-encyklopedin ENCODE. Jag har skrivit lite om det förut, men kortfattat: ENCODE gick ut på att använda olika sekvenseringsbaserade experiment för att hitta de sekvenser i det mänskliga genomet som har någon funktion. Projektet hävdade at en väldigt stor de av genomet, upp till 80%, dök upp i något av experimenten som kopplade till någon biokemisk aktivitet. Deras motståndare svarade att ENCODE använt fel definition av ”funktion”; det viktiga är inte aktivitet utan om den aktiviteten bevarats av naturligt urval.

För det första: en dna-sekvens gör ingenting i sig själv; det är inte det som är frågan. Det intressanta är vad cellen och dess maskineri av biologiskt aktiva proteiner och rna-molekyler gör med en dna-sekvens. Det enklaste är kanske att säga att en sekvens’ funktion är vad cellen gör med den, åtminstone om det sker tillräckligt pålitligt och reproducerbart. Å andra sidan kan en ha en evolutionär syn på funktion, där en sekvens endast har en funktion om den främjats av naturligt urval. Alltså: sekvensen ser ut som den gör och cellen använder den som den gör därför att det på något sätt givit individer som bär den reproduktiv framgång. Dan Graur & co (2013) skrev en mycket arg artikel om ENCODE där de bland annat förespråkar den evolutionära synen på funktion. Artikeln är kanske lite för arg, men det här är ett bra exempel:

In biology, there are two main concepts of function: the “selected effect” and “causal role” concepts of function. /…/ For clarity, let us use the following illustration (Griffiths 2009). There are two almost identical sequences in the genome. The first, TATAAA, has been maintained by natural selection to bind a transcription factor; hence, its selected effect function is to bind this transcription factor. A second sequence has arisen by mutation and, purely by chance, it resembles the first sequence; therefore, it also binds the transcription factor. However, transcription factor binding to the second sequence does not result in transcription, that is, it has no adaptive or maladaptive consequence. Thus, the second sequence has no selected effect function, but its causal role function is to bind a transcription factor.

Jag tror inte att jag förvränger Graur & co:s argument om jag säger att de ser 80%-siffran som en sorts reductio ad absurdum av att prata om funktion som bara vad en dna-sekvens används till. Genomet är stort och fullt med sekvenser som bara av en slump innehåller bindingsställen för olika reglerande proteiner etc. Oavsett om det råkar skrivas av till rna ibland eller binda till transkriptionsfaktorer så är det mesta ändå att betrakta som irrelevant från det naturliga urvalets synpunk. Sedan finns det en del som tycker att skräp-dna låter slarvigt och vulgärt, men det är en fråga om språkbruk, inte om genomets funktion.

Hur vet en då om en sekvens har funktion ur det naturliga urvalets perspektiv? När genomet kopieras drabbas det av slumpvisa mutationer, avskrivningsfel helt enkelt, som ändrar sekvensen här och där. Om mutationen gör att något går sönder och det påverkar individens förmåga att reproducera sig tillräckligt kommer varianten sorteras bort av naturligt urval. Därför är vissa viktiga delar av genomet, framför allt de gener som kodar för proteiner, konserverade. Därför går de också att känna igen mellan arter som är mycket avlägset släkt, även om den omkringliggande icke-kodande sekvensen kan vara helt olika.

Men det är inte självklart att det alltid är funktion-genom-naturligt-urval som är det intressanta. För det första, allt är inte lika väl konserverat som de proteinkodande sekvenserna, så det är inte säkert att alla reglerande sekvenser och nyligen tillkomna gener som är specifika för ett visst släkte kommer gå att hitta med metoder som letar efter konservering. Det finns en risk att missa de absolut senaste intressanta sekvenserna under naturligt urval bara för att det inte finns något att jämföra med. Dessutom är det inte alls säkert att en bara är intresserad av sekvenser som bevaras av naturligt urval. Om en studerar mänsklig sjukdom, till exempel, är det mycket möjligt att de intressanta sekvenserna faktiskt är neutrala i förhållande till naturligt urval. De kan till exempel ha sin effekt sent i livet, efter reproduktiv ålder.

Vad är en gen?

Det här skrev jag om för ett tag sedan i samband med den så kallade fetmagenen, en genetisk variant som är associerad med vikt hos människor, men jag tror det är värt att dra ut på det lite mer. Vad är egentligen en gen? Det visar sig nämligen att det finns åtminstone två betydelser av ordet ”gen” som är vanliga inom genetik, evolution och biologi i stort. Det är inte bara förvirrande för utomstående utan orsakar ibland viss språkförbistring även i vetenskaplig litteratur.

Om vi börjar i fel ände, alltså med den molekylära definitionen, så är en gen en bit dna som skrivs av till ett protein eller någon annan produkt som har en funktion. Själv brukar jag tänka att om en bit dna är intressant nog att ha ett namn så förtjänar den att kallas gen, men jag tror de flesta skulle säga att sekvenser som inte uttrycks inte är ”gener”, utan någon sorts funktionsbärande icke-kodande sekvenser. En gen(1) är alltså ett område i genomet, och gener kan komma i olika varianter. Vi diploida organismer bär två kopior av varje gen. Men om en tar två människor och jämför dem så har de alla samma uppsättning gener, men kan ha olika varianter av dem. Det här är det språkbruk jag själv föredrar och försöker hålla mig till: när jag skriver ”gen” menar jag en dna-sekvens som har ett namn.

Men det är inte vad ordet gen ursprungligen betydde! Som ordet användes av Hugo de Vries och Wilhelm Johannsen m.fl. innan någon visste om dna betydde det väsentligen genetisk variant. Alltså: en gen(2) är ärftlighetens minsta enhet. Vi diploida organismer bär alltså på två varianter, två gener, på varje locus (som det heter: bokstavligen plats, vilket typ motsvarar den molekylära genen ovan). Så om någon pratar om att ha ”fetmagenen” använder hen, kanske utan att tänka på det, ordet gen i den här klassiska bemärkelsen att bära på det anlag som orsakar större kroppsvikt. I så fall finns naturligtvis också en ”magergen”, alltså en variant som ger relativt mindre kroppsvikt. Båda av dem är varianter som påverkar uttrycket av den molekylära genen IRX3.

Endometrios och dna-metylering

Idag är det sista dagen i mars, som var endometriosmånaden. Endometrios verkar vara ett jävla elände, svårt att göra något åt och dessutom vanligt. Sjukdomen har med celldifferentiering att göra; det börjar växa livmoderliknande celler utanför livmodern, där de orsakar smärta och infertilitet. Ingen vet vad det egentligen beror på, men det verkar vara något som kommer i och med menstruationscykeln hos människor och andra primater. Livmoderslemhinnan differentieras, alltså utvecklas, varje månad oavsett om något befruktat ägg implanteras eller ej, och stöts ut vid mensen. Hos andra däggdjur händer det inte förrän det fastnar ett befruktat ägg; det verkar vara något med den här upprepade differentieringen och utstötningen som på något sätt kan gå snett och orsaka endometrios.

Den sjätte mars kom det en artikel, Genome-Wide DNA Methylation Analysis Predicts an Epigenetic Switch for GATA Factor Expression in Endometriosis  (Dyson m.fl. 2014), om dna-metylering och genreglering i endometrios. Den är en av många som går ut på att förstå vilka gener och signalvägar i celler som är inblandade i sjukdomen. Den leder inte direkt till någon behandling, men bidrar förhoppningsvis en liten del till en grund att stå på för att kunna utveckla en. Författarna har jämfört dna-metylering och genuttryck i endometriosceller och normala celler, obehandlade och behandlade med en hormoncocktail som liknar den som får livmoderslemhinnan att mogna, för att se vilka gener som verkar regleras konstigt i de sjuka cellerna. Redan tidigare finns det en lista på viktiga gener som uttrycks och metyleras annorlunda i endometrios, och författarna hittar ett gäng till, framför allt ett par gener i GATA-familjen.

Genuttryck handlar alltså om vilka gener som cellen använder och inte. Alla celltyper har samma arvsmassa, men de använder olika delar av den. Genuttryck regleras på många olika sätt, men dna-metylering är ett av de epigenetiska märken som kan vara inblandat i att reglera vissa gener. Författarna kom fram till att genuttryck skiljer sig en hel del mellan sjuka och friska celler, men framför allt blir det stora ändringar när cellerna utsätts för hormoner. Men dna-metyleringen, däremot, var relativt oförändrad av hormonbehandlingen men skilde sig mellan sjuka och friska celler.

För att sortera fram de gener som mest troligt reglerades av dna-metylering hittade de på en statistisk analys som jag tycker verkar intressant men inte är helt övertygad om att jag förstår. Det är en linjär modell av genttryck som funktion av dna-metylering vid cytosiner nära genen och en variabel som beskriver cytosinens läge i förhållande till genen (och närmaste CpG-ö). De sökte efter en statistisk interaktion mellan läge och metylering; tanken är att det är mer troligt att genen regleras av dna-metylering om metyleringen är specifik för ett visst mindre område. Interaktionsanalysen ger dem i alla fall en liten lista på extra intressanta gener, bland annat GATA-gener. De är en familj av transkriptionsfaktorer, alltså gener som i sin tur reglerar andra gener.

Författarna prövade att slå ut och överuttrycka GATA2 och GATA6 genen i endometriosceller. Det är en fantastiskt bra sak med cellkultur, att det ibland går att göra genetiska modifikationer i celler som kommer från riktiga patientprover. Det är förstås inte riktigt att experimentera med sjuka celler i sin naturliga miljö, men det är ganska nära. Högt uttryck av GATA2 verkar leda till differentiering, medan högt uttryck av GATA6 får normala celler att bete sig mer som endometriotiska celler. Tyvärr räckte det inte med att slå ner GATA6 och öka GATA2 för att få sjuka celler att bete sig som friska igen. Men de försökte i alla fall. Det finns fler gener att pröva.

Litteratur

Dyson MT, Roqueiro D, Monsivais D, Ercan CM, Pavone ME, et al. (2014) Genome-Wide DNA Methylation Analysis Predicts an Epigenetic Switch for GATA Factor Expression in Endometriosis. PLoS Genet 10(3): e1004158. doi:10.1371/journal.pgen.1004158

Inför NBIC45: hurra för pcr!

Våren är alltså min undervisningssäsong. Nu är det dags för NBIC45, Molekylärgenetik, där jag är med och håller i ett par laborationer. Det här är den av kurserna som är närmast det jag själv håller på med och dessutom roligast. Nåja, de som inte tänker syssla med genetik kanske inte tycker att det är fullt lika underhållande, men det kan ändå vara bra att veta lite om hur molekylärgenetik går till. Bland annat ska vi ta fram dna, kopiera det med polymeraskedjereaktionen och titta på produkterna på agarosgel.

Om någon av studenterna skulle leta sig hit: Här är några poster från tidigare år:

Polymeraskedjereaktionen
Att tolka agarosgel
Så går det till: att ta fram DNA och RNA, polymeraskedjereaktionen och agarosgelelektrofores.

Och här är lite inofficiell rekommenderad läsning: Dels patentet på pcr (Kary Mullis m.fl) från 1987 och ”Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors”, Yanisch-Peron, Veira & Messing (1985), som beskriver plasmiden pUC19 som vi använder i andra laborationen.

Om den andra kursen som börjar nu, Communicating science, har jag inte lika mycket att säga, mer än att Martins regler för vetenskapskommunikation lyder:

1. Om det överhuvudtaget är möjligt, nämn dinosaurier.

2. Påstå inte att din forskning hjälper till att bota cancer om inte din forskning faktiskt handlar om att bota cancer.

Dagens rekommendation: Soay-fårens horn

Ännu en höjdpunkt från ESEB i somras! Jag vet inte om det var planerat eller ett sammanträffande, men Susan Johnston höll det här föredraget samma dag som artikeln kom ut i Nature. Den handlar om genetisk variation för hornstorlek hos får och hur det kommer sig att det fortfarande finns någon variation, trots att naturligt urval gynnar får med stora horn. Tyvärr börjar videon en bit in i föredraget mitt i förklaringen av ett diagram, så jag har länkat till en något naturligare startpunkt en bit in, där det börjar handla om Soayfåren på S:t Kilda. Bakgrunden är som följer: naturligt urval är bra på att göra sig av med genetisk variation. Om det finns ärftlig variation för en egenskap (i fårens fall: hur stora horn de har) och om den orsakar en skillnad i reproduktiv framgång (får med stora horn får fler ungar) så borde varianterna som orsakar små horn med tiden bli utkonkurrerade. Förr eller senare borde alla får ha stora horn. Varför finns det får med små horn? Soayfårens hornstorlek bestäms till stor del av en enda genetisk variant med enkelt arv; Johnston & co har tittat på hur bra fåren överlever och hur mycket de fortplantar sig om de har varianten för små horn, varianten för stora eller är heterozygota. Det visar sig att det är heterozygoterna, de som har en kopia av varje variant, som i långa loppet har störst sammantagen reproduktiv framgång. De får färre lamm, men de lever också längre, medan får med bara varianten stora horn har sämre överlevnad och får med bara den för små har sämre fortplantning. Lyssna på föredraget för mer detaljer!

(Åter igen: hitta den långhåriga och den korthåriga Linköpingsgenetikern i publiken under frågestunden …)

Litteratur

Johnston, Susan E., et al. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature (2013).